Q: How do Logger Pro and Logger Lite calculate linear least-squares fits?

A: The program calculates the "best fit" line on graphs by using linear regression by the method of least squares. The equations used are:

slope = M =
$$\frac{n (\sum x_i y_i) - (\sum x_i) (\sum y_i)}{\Delta}$$

y-intercept = B =
$$\frac{(\sum x_i^2) (\sum y_i) - (\sum x_i) (\sum x_i y_i)}{\Delta}$$

correlation coefficient =
$$\frac{\sum (x_i - x_m) (y_i - y_m)}{(n - 1) s_x s_y}$$

standard deviation of slope = SQRT(n * σ_y^2 / Δ)
standard deviation of y-intercept = SQRT($\sigma_y^2 \sum x_i^2 / \Delta$)
n = number of data pairs

where:

 $\Delta = n \left(\sum x_i^2 \right) - \left(\sum x_i \right)^2$ $s_x =$ standard deviation of x data $s_v =$ standard deviation of y data

$$\sigma_y^2 = (------) \sum (y_i - B - M x_i)^2$$

These are fairly standard formulas.¹ The correlation coefficient of regression is a useful measure of how well the data fits a straight line, but it should not be overused. Always examine the graph. The coefficient is greatly affected by a few extreme points.

If you are using the slope to determine some physical quantity (eg, the acceleration from a graph of velocity vs time) then the standard deviation of the slope is a reasonable 67% confidence level uncertainty.

¹Refer to a statistics text for more information; for example, An Introduction to Error Analysis by John R. Taylor, Oxford University Press, 1982.